## Preprints and Publications

## Preprints

Preprints

### [27] S. S. Ghoshal, B. Haspot and A. Jana, Existence of almost global weak solution for the Euler-Poisson in one dimension with large initial data. Online here

[27] S. S. Ghoshal, B. Haspot and A. Jana, Existence of almost global weak solution for the Euler-Poisson in one dimension with large initial data. Online here

### [26] S. S. Ghoshal, A. Jana and E. Wiedemann, Weak-Strong uniqueness for the isentropic Euler equations with possible vacuum. Online here

[26] S. S. Ghoshal, A. Jana and E. Wiedemann, Weak-Strong uniqueness for the isentropic Euler equations with possible vacuum. Online here

### [25] *S. S. Ghoshal, J. D. Towers** and G. Vaidya,* Well-posedness for conservation laws with spatial heterogeneities and a study of BV regularity. Online here

[25]

*S. S. Ghoshal, J. D. Towers*

*and G. Vaidya,*Well-posedness for conservation laws with spatial heterogeneities and a study of BV regularity. Online here

*[24] S. S. Ghoshal, A. Jana and B. Sarkar**,** *Energy-balance for the incompressible Euler equations with stochastic forcing.* **Online here*

*[24] S. S. Ghoshal, A. Jana and B. Sarkar*

*,*

*Energy-balance for the incompressible Euler equations with stochastic forcing.*

*Online here*

*[**23**] B. Andreianov, S. S. Ghoshal and K. Koumatos, Non-controllability of the viscous Burgers equation and a detour into the well-posedness of unbounded entropy solutions to scalar conservation laws**. **Online here** *

*[*

*23*

*] B. Andreianov, S. S. Ghoshal and K. Koumatos, Non-controllability of the viscous Burgers equation and a detour into the well-posedness of unbounded entropy solutions to scalar conservation laws*

*.*

*Online here*

*[**22**] Adimurthi and S. S. Ghoshal, Single shock solution for non convex scalar conservation laws. **Online here*

*[*

*22*

*] Adimurthi and S. S. Ghoshal, Single shock solution for non convex scalar conservation laws.*

*Online here*

## Publications

Publications

### [21] *S. S. Ghoshal, J. D. Towers** and G. Vaidya, A Godunov type scheme and error estimates for multidimensional scalar conservation laws with Panov-type discontinuous flux**, accepted for publication in **Numerische Mathematik.*

[21]

*S. S. Ghoshal, J. D. Towers*

*and G. Vaidya, A Godunov type scheme and error estimates for multidimensional scalar conservation laws with Panov-type discontinuous flux*

*, accepted for publication in*

*Numerische Mathematik.*

*[**2**0**] Adimurthi** and ** S. S. Ghosha**l**, Exact and optimal controllability for scalar conservation laws with discontinuous flux accepted f**or publication in Commun. Contemp. Math.** *

*[*

*2*

*0*

*] Adimurthi*

*and*

*S. S. Ghosha*

*l*

*, Exact and optimal controllability for scalar conservation laws with discontinuous flux accepted f*

*or publication in Commun. Contemp. Math.*

*[19] **S. S. Ghoshal, J. D. Towers** and G. Vaidya, *Convergence of a Godunov scheme for degenerate conservation laws with BV spatial flux and a study of Panov type fluxes, accepted for publication in J. Hyperbolic Differ. Equ.

*[19]*

*S. S. Ghoshal, J. D. Towers*

*and G. Vaidya,*Convergence of a Godunov scheme for degenerate conservation laws with BV spatial flux and a study of Panov type fluxes, accepted for publication in J. Hyperbolic Differ. Equ.

*[18] **S. S. Ghoshal, A. Jana and K. Koumatos, On the uniqueness of solutions to hyperbolic systems of conservation laws,** *J. Differential Equations, 291 , 5, 110-153 *(202**1)**.*

*[18]*

*S. S. Ghoshal, A. Jana and K. Koumatos, On the uniqueness of solutions to hyperbolic systems of conservation laws,*

*J. Differential Equations, 291 , 5, 110-153*

*(202*

*1)*

*.*

*[17] S. S. Ghoshal, A. Jana and B. Sarkar**,** *Uniqueness and energy balance for isentropic Euler equation with stochastic forcing, accepted for publication in Nonlinear Analysis. Real World Appl. 61 (2021)Paper No. 103328, 18 pp.

*[17] S. S. Ghoshal, A. Jana and B. Sarkar*

*,*

*Uniqueness and energy balance for isentropic Euler equation with stochastic forcing, accepted for publication in Nonlinear Analysis. Real World Appl. 61 (2021)Paper No. 103328, 18 pp.*

*[1**6**] S. S. Ghoshal and A. Jana, Non existence of the BV regularizing effect for scalar conservation laws in several space dimension**s** fo**r C^2 flux**, ** SIAM J. Math. Anal. 53, no.2, 1908-1943, (2021). *

*[1*

*6*

*] S. S. Ghoshal and A. Jana, Non existence of the BV regularizing effect for scalar conservation laws in several space dimension*

*s*

*fo*

*r C^2 flux*

*,*

*SIAM J. Math. Anal. 53, no.2, 1908-1943, (2021).*

*[1**5**] S. S. Ghoshal and A. Jana, Uniqueness of dissipative solutions to the complete Euler system**, J. Math. Fluid Mech. 23, 34 (2021).*

*[1*

*5*

*] S. S. Ghoshal and A. Jana, Uniqueness of dissipative solutions to the complete Euler system*

*, J. Math. Fluid Mech. 23, 34 (2021).*

*[1**4**] S. S. Ghoshal and A. Jana, Optimal jump set in hyperbolic conservation laws**, *J. Hyperbolic Differ. Equ., (2020), 17, 04, 765-784.

*[1*

*4*

*] S. S. Ghoshal and A. Jana, Optimal jump set in hyperbolic conservation laws*

*,*J. Hyperbolic Differ. Equ., (2020), 17, 04, 765-784.

*[1**3**] S. S. Ghoshal, A. Jana and J. D. Towers, Convergence of a Godunov scheme to an Audusse-Perthame adapted entropy solution for conservation laws with BV spatial flux, **Numerische Mathematik,** (20**20**),** 146 (3), 629-659.*

*[1*

*3*

*] S. S. Ghoshal, A. Jana and J. D. Towers, Convergence of a Godunov scheme to an Audusse-Perthame adapted entropy solution for conservation laws with BV spatial flux,*

*Numerische Mathematik,*

*(20*

*20*

*),*

*146 (3), 629-659.*

*[1**2**] S. S. Ghoshal, B. Guelmame, A. Jana and S. Junca, Optimal BV^s Regularity for all time for entropy solutions of conservation laws, * *Nonlinear Differ. Equ. Appl.,* 27, 46 (2020).

*[1*

*2*

*] S. S. Ghoshal, B. Guelmame, A. Jana and S. Junca, Optimal BV^s Regularity for all time for entropy solutions of conservation laws,*

*Nonlinear Differ. Equ. Appl.,*27, 46 (2020).

*[11] E. Feireisl, S. S. Ghoshal and A. Jana, On Uniqueness of dissipative solutions to the isentropic Euler system, Comm. Partial Differential Equations, 44 (2019), no. 12, 1285-1298.*

*[11] E. Feireisl, S. S. Ghoshal and A. Jana, On Uniqueness of dissipative solutions to the isentropic Euler system, Comm. Partial Differential Equations, 44 (2019), no. 12, 1285-1298.*

### [10] J.-M. Coron, S. Ervedoza, S. S. Ghoshal, O. Glass and V. Perrollaz, Dissipative boundary conditions for 2 × 2 hyperbolic systems of conservation laws for entropy solutions in BV, J. Differential Equations, 262, (2017), no. 1, 1-30.

[10] J.-M. Coron, S. Ervedoza, S. S. Ghoshal, O. Glass and V. Perrollaz, Dissipative boundary conditions for 2 × 2 hyperbolic systems of conservation laws for entropy solutions in BV, J. Differential Equations, 262, (2017), no. 1, 1-30.

### [9] S. S. Ghoshal, BV Regularity Near The Interface For Nonuniform Convex Discontinuous Flux, Networks and Heterogeneous Media, 11, no.2, (2016), 331-348.

[9] S. S. Ghoshal, BV Regularity Near The Interface For Nonuniform Convex Discontinuous Flux, Networks and Heterogeneous Media, 11, no.2, (2016), 331-348.

### [8] B. Andreianov , C. Donadello, S. S. Ghoshal and U. Razafison, On the attainability set for triangular type system of conservation laws with initial data control, J. Evol. Equ., 15, (2015), no.3, 503-532.

[8] B. Andreianov , C. Donadello, S. S. Ghoshal and U. Razafison, On the attainability set for triangular type system of conservation laws with initial data control, J. Evol. Equ., 15, (2015), no.3, 503-532.

### [7] S. S. Ghoshal, Optimal results on TV bounds for scalar conservation laws with discontinuous flux, J. Differential Equations, 3, (2015), 980–1014.

[7] S. S. Ghoshal, Optimal results on TV bounds for scalar conservation laws with discontinuous flux, J. Differential Equations, 3, (2015), 980–1014.

### [6] Adimurthi, S. S Ghoshal and G.D. Veerappa Gowda, Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux, Rend. Semin. Mat. Univ. Padova, 132, (2014), 1–24.

[6] Adimurthi, S. S Ghoshal and G.D. Veerappa Gowda, Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux, Rend. Semin. Mat. Univ. Padova, 132, (2014), 1–24.

### [5] Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, L^p stability for entropy solutions of scalar conservation laws with convex flux, J. Differential Equations, vol. 256, (2014), 3395-3416.

[5] Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, L^p stability for entropy solutions of scalar conservation laws with convex flux, J. Differential Equations, vol. 256, (2014), 3395-3416.

### [4] Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Optimal controllability for scalar conservation laws with convex flux, J. Hyperbolic Differ. Equ., 11 (2014), 477–491.

[4] Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Optimal controllability for scalar conservation laws with convex flux, J. Hyperbolic Differ. Equ., 11 (2014), 477–491.

### [3] Adimurthi, S. S. Ghoshal and G.D. Veerappa Gowda, Exact controllability of scalar conservation law with strict convex flux, Math. Control Relat. Fields, 4, 4, (2014) 401–449.

[3] Adimurthi, S. S. Ghoshal and G.D. Veerappa Gowda, Exact controllability of scalar conservation law with strict convex flux, Math. Control Relat. Fields, 4, 4, (2014) 401–449.

### [2] Adimurthi, S.S. Ghoshal and G.D.Veerappa Gowda, Structure of the entropy solution of a scalar conservation law with strict convex flux, J. Hyperbolic Differ. Equ., Vol. 09, No. 04, (2012), 571-611.

[2] Adimurthi, S.S. Ghoshal and G.D.Veerappa Gowda, Structure of the entropy solution of a scalar conservation law with strict convex flux, J. Hyperbolic Differ. Equ., Vol. 09, No. 04, (2012), 571-611.

### [1] Adimurthi, R. Dutta, S. S. Ghoshal and G.D. Veerappa Gowda, Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Comm. Pure Appl. Math., 64 (1), (2011), 84–115.

[1] Adimurthi, R. Dutta, S. S. Ghoshal and G.D. Veerappa Gowda, Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Comm. Pure Appl. Math., 64 (1), (2011), 84–115.