Preprints and Publications 

Preprints

[31] S. S. Ghoshal, P. Venkatesh and E. Wiedemann, A Non-Conservative, Non-Local Approximation of the Burgers Equation. Online here 

[30] S. S. Ghoshal and A. Jana, On blow up of C^1 solutions of isentropic Euler system. Online here   

[29] B. Andreianov, S. S. Ghoshal and K. Koumatos, Lack of controllability of the viscous Burgers equation. Part II: The L^2 setting, with a detour into the well-posedness of unbounded entropy solutions to scalar conservation laws. Online here 

[28] S. S. Ghoshal, B. Haspot and  A. Jana, Existence of almost global weak solution for the Euler-Poisson in one dimension with large initial data. Online here 

[27] Adimurthi and S. S. Ghoshal, Single shock solution for non convex scalar conservation laws. Online here 

Publications

[26] S. S. Ghoshal, S. Junca and A. Parmar, Higher regularity for entropy solutions of conservation laws with geometrically constrained discontinuous flux, accepted for publication in SIAM J. Math. Anal

[25]  S. S. Ghoshal, J. D. Towers and G. Vaidya, BV regularity of the adapted entropy solutions for conservation laws with infinitely many spatial discontinuities, Netw. Heterog. Media 19 (2024), No. 1, 196-213. 

[24] S. S. Ghoshal, S. Junca and A. Parmar, Fractional regularity for conservation laws with discontinuous flux, Nonlinear Analysis. Real World Appl., 75 (2024), paper No. 103960, 28 pp.

[23] Adimurthi and  S. S. Ghoshal, Exact and optimal controllability for scalar conservation laws with discontinuous flux, Commun. Contemp. Math. 25 (2022), no. 6, Paper No. 2250024, 54 pp.

[22] B. Andreianov, S. S. Ghoshal and K. Koumatos, Lack of controllability of the viscous Burgers equation. Part I: The L∞ setting, Journal of Evolution Equations (2022), no.3, Paper no. 70, 24pp.

[21] S. S. Ghoshal, A. Jana and E. Wiedemann, Weak-Strong uniqueness for the isentropic Euler equations with possible vacuum,  Partial Differ. Equ. Appl. 3 (2022), no. 4, Paper No. 54, 21 pp.

[20] S. S. Ghoshal, J. D. Towers and G. Vaidya, A Godunov type scheme and error estimates for multidimensional scalar conservation laws with Panov-type discontinuous flux, Numerische Mathematik. 151 (2022), no. 3, 601-625. 

[19] S. S. Ghoshal, J. D. Towers and G. Vaidya, Convergence of a Godunov scheme for degenerate conservation laws with BV spatial flux and a study of Panov type fluxes, J. Hyperbolic Differ. Equ. 19 (2022), no. 2, 365–390. 

[18] S. S. Ghoshal, A. Jana and K. Koumatos, On the uniqueness of solutions to hyperbolic systems of conservation laws, J. Differential Equations, 291 , 5, 110-153 (2021).

[17] S. S. Ghoshal, A. Jana and B. Sarkar, Uniqueness and energy balance for isentropic Euler equation with stochastic forcing, Nonlinear Analysis. Real World Appl. 61  (2021)Paper No. 103328, 18 pp.

[16] S. S. Ghoshal and A. Jana, Non existence of the BV regularizing effect for scalar conservation laws in several space dimensions for C^2 flux,  SIAM J. Math. Anal. 53, no.2, 1908-1943, (2021). 

[15] S. S. Ghoshal and A. Jana,  Uniqueness of dissipative solutions to the complete Euler system,  J. Math. Fluid Mech. 23, 34 (2021).

[14] S. S. Ghoshal and A. Jana,  Optimal jump set in hyperbolic conservation laws, J. Hyperbolic Differ. Equ., (2020), 17, 04, 765-784.

[13]  S. S. Ghoshal,  A. Jana and J. D. Towers, Convergence of a Godunov scheme to an Audusse-Perthame  adapted entropy solution for conservation laws with BV spatial flux, Numerische Mathematik, (2020), 146 (3), 629-659.

[12] S. S. Ghoshal, B. Guelmame, A. Jana and S. Junca,  Optimal BV^s Regularity for all time for entropy solutions of conservation laws,  Nonlinear Differ. Equ. Appl., 27, 46 (2020). 

[11] E. Feireisl, S. S. Ghoshal and A. Jana, On Uniqueness of dissipative solutions to the isentropic Euler system,  Comm. Partial Differential Equations, 44 (2019), no. 12, 1285-1298.

[10] J.-M. Coron, S. Ervedoza, S. S. Ghoshal,  O. Glass and V. Perrollaz, Dissipative boundary conditions for 2 × 2 hyperbolic systems of conservation laws for entropy solutions in BV, J. Differential Equations, 262, (2017), no. 1, 1-30. 

[9] S. S. Ghoshal, BV Regularity Near The Interface For Nonuniform Convex Discontinuous Flux, Netw. Heterog. Media, 11,  no.2, (2016), 331-348.

[8]  B. Andreianov , C. Donadello, S. S. Ghoshal and U. Razafison, On the attainability set for triangular type system of conservation laws with initial data control, J. Evol. Equ., 15, (2015), no.3, 503-532.

[7] S. S. Ghoshal, Optimal results on TV bounds for scalar conservation laws with discontinuous flux, J. Differential Equations, 3, (2015), 980–1014.

[6] Adimurthi, S. S Ghoshal and G.D. Veerappa Gowda, Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux, Rend. Semin. Mat. Univ. Padova, 132, (2014), 1–24.

[5] Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, L^p stability for entropy solutions of scalar conservation laws with convex flux, J. Differential Equations, vol. 256, (2014), 3395-3416.

[4] Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Optimal controllability for scalar conservation laws with convex flux, J. Hyperbolic Differ. Equ., 11 (2014), 477–491.

[3] Adimurthi, S. S. Ghoshal and G.D. Veerappa Gowda, Exact controllability of scalar conservation law with strict convex flux, Math. Control Relat. Fields, 4, 4, (2014) 401–449.

[2] Adimurthi, S.S. Ghoshal and  G.D.Veerappa Gowda, Structure of the entropy solution of a scalar conservation law with strict convex flux, J. Hyperbolic Differ. Equ., Vol. 09, No. 04, (2012),  571-611.

[1] Adimurthi, R. Dutta, S. S. Ghoshal and  G.D. Veerappa Gowda, Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Comm. Pure Appl. Math., 64 (1), (2011), 84–115.


Conference Proceedings

S. S. Ghoshal, A. Jana and B. Sarkar, On energy conservation for stochastically forced fluid flows,   XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications,  Volume I, 275-285.